Stas Shvartsman is a Professor of Chemical and Biological Engineering at Princeton University. He was born in Odessa, in the former Soviet Union, and studied Physical Chemistry and Chemical Engineering in the Moscow State University, Technion-Israel Institute of Technology, and Princeton University.

Stas Shvartsman is a Professor of Chemical and Biological Engineering at Princeton University. He was born in Odessa, in the former Soviet Union, and studied Physical Chemistry and Chemical Engineering in the Moscow State University, Technion-Israel Institute of Technology, and Princeton University. After postdoctoral work at MIT, he opened his own laboratory at the Lewis-Sigler Institute for Integrative Genomics at Princeton. The Shvartsman group uses experiments, theory, and computational approaches to develop predictive models of dynamical processes in cells and tissues. Current projects in the group fall into three broad classes, related to enzyme kinetics, tissue morphogenesis, and developmental bioenergetics. The first class of projects aims to establish quantitative descriptions of enzyme kinetics in vivo. The experimental systems here are Drosophila embryos and reconstituted enzyme reactions and theory is based on more or less conventional models of chemical kinetics. The second class of projects explores the processes by which two-dimensional sheets of cells give rise to three-dimensional structures of tissues and organs. Here, experiments are done in developing Drosophila eggs and zebrafish embryos and theory relies on either continuum or discrete mechanical models of epithelial tissues. Projects in the third class study how developing systems manage their constant need for energy. This project is still very young and uses the early Drosophila embryo as a powerful experimental system for genetic, biochemical, and imaging studies of embryonic metabolism.